Mister Exam

Other calculators:

Limit of the function y*x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /   2\
 lim  \y*x /
x->-2+      
$$\lim_{x \to -2^+}\left(x^{2} y\right)$$
Limit(y*x^2, x, -2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -2^-}\left(x^{2} y\right) = 4 y$$
More at x→-2 from the left
$$\lim_{x \to -2^+}\left(x^{2} y\right) = 4 y$$
$$\lim_{x \to \infty}\left(x^{2} y\right) = \infty \operatorname{sign}{\left(y \right)}$$
More at x→oo
$$\lim_{x \to 0^-}\left(x^{2} y\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{2} y\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x^{2} y\right) = y$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{2} y\right) = y$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{2} y\right) = \infty \operatorname{sign}{\left(y \right)}$$
More at x→-oo
Rapid solution [src]
4*y
$$4 y$$
One‐sided limits [src]
      /   2\
 lim  \y*x /
x->-2+      
$$\lim_{x \to -2^+}\left(x^{2} y\right)$$
4*y
$$4 y$$
      /   2\
 lim  \y*x /
x->-2-      
$$\lim_{x \to -2^-}\left(x^{2} y\right)$$
4*y
$$4 y$$
4*y