Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (5+x-3*x^2)/(4-x+2*x^2)
Limit of (4-x^2)/(3-x^2)
Limit of (3+2*x)/(1-5*x)
Limit of (1-2*cos(x))/sin(3*x)
Graphing y =
:
x^2+6*x
Equation
:
x^2+6*x
Identical expressions
x^ two + six *x
x squared plus 6 multiply by x
x to the power of two plus six multiply by x
x2+6*x
x²+6*x
x to the power of 2+6*x
x^2+6x
x2+6x
Similar expressions
(8+x^2+6*x)/(12+x^2-8*x)
(-5*x^2+6*x)/(-2*x+8*x^3)
(3-x^2-2*x)/(2*x^2+6*x)
x^2-6*x
(-8+2*x^2+6*x)/(-16+x^2)
(-7+x^2+6*x)/(2+x^2-3*x)
Limit of the function
/
x^2+6*x
Limit of the function x^2+6*x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 2 \ lim \x + 6*x/ x->oo
$$\lim_{x \to \infty}\left(x^{2} + 6 x\right)$$
Limit(x^2 + 6*x, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(x^{2} + 6 x\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty}\left(x^{2} + 6 x\right)$$ =
$$\lim_{x \to \infty}\left(\frac{1 + \frac{6}{x}}{\frac{1}{x^{2}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1 + \frac{6}{x}}{\frac{1}{x^{2}}}\right) = \lim_{u \to 0^+}\left(\frac{6 u + 1}{u^{2}}\right)$$
=
$$\frac{0 \cdot 6 + 1}{0} = \infty$$
The final answer:
$$\lim_{x \to \infty}\left(x^{2} + 6 x\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(x^{2} + 6 x\right) = \infty$$
$$\lim_{x \to 0^-}\left(x^{2} + 6 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{2} + 6 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x^{2} + 6 x\right) = 7$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{2} + 6 x\right) = 7$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{2} + 6 x\right) = \infty$$
More at x→-oo
The graph