Mister Exam

Other calculators:


(-1+sin(x))/cos(x)

Limit of the function (-1+sin(x))/cos(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /-1 + sin(x)\
 lim  |-----------|
   pi \   cos(x)  /
x->--+             
   2               
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\sin{\left(x \right)} - 1}{\cos{\left(x \right)}}\right)$$
Limit((-1 + sin(x))/cos(x), x, pi/2)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to \frac{\pi}{2}^+}\left(\sin{\left(x \right)} - 1\right) = 0$$
and limit for the denominator is
$$\lim_{x \to \frac{\pi}{2}^+} \cos{\left(x \right)} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\sin{\left(x \right)} - 1}{\cos{\left(x \right)}}\right)$$
=
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\frac{d}{d x} \left(\sin{\left(x \right)} - 1\right)}{\frac{d}{d x} \cos{\left(x \right)}}\right)$$
=
$$\lim_{x \to \frac{\pi}{2}^+}\left(- \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right)$$
=
$$\lim_{x \to \frac{\pi}{2}^+}\left(- \cos{\left(x \right)}\right)$$
=
$$\lim_{x \to \frac{\pi}{2}^+}\left(- \cos{\left(x \right)}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
      /-1 + sin(x)\
 lim  |-----------|
   pi \   cos(x)  /
x->--+             
   2               
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\sin{\left(x \right)} - 1}{\cos{\left(x \right)}}\right)$$
0
$$0$$
= -3.06161699786838e-17
      /-1 + sin(x)\
 lim  |-----------|
   pi \   cos(x)  /
x->---             
   2               
$$\lim_{x \to \frac{\pi}{2}^-}\left(\frac{\sin{\left(x \right)} - 1}{\cos{\left(x \right)}}\right)$$
0
$$0$$
= -3.06161699786839e-17
= -3.06161699786839e-17
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\pi}{2}^-}\left(\frac{\sin{\left(x \right)} - 1}{\cos{\left(x \right)}}\right) = 0$$
More at x→pi/2 from the left
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\sin{\left(x \right)} - 1}{\cos{\left(x \right)}}\right) = 0$$
$$\lim_{x \to \infty}\left(\frac{\sin{\left(x \right)} - 1}{\cos{\left(x \right)}}\right)$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(x \right)} - 1}{\cos{\left(x \right)}}\right) = -1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)} - 1}{\cos{\left(x \right)}}\right) = -1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\sin{\left(x \right)} - 1}{\cos{\left(x \right)}}\right) = \frac{-1 + \sin{\left(1 \right)}}{\cos{\left(1 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(x \right)} - 1}{\cos{\left(x \right)}}\right) = \frac{-1 + \sin{\left(1 \right)}}{\cos{\left(1 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sin{\left(x \right)} - 1}{\cos{\left(x \right)}}\right)$$
More at x→-oo
Numerical answer [src]
-3.06161699786838e-17
-3.06161699786838e-17
The graph
Limit of the function (-1+sin(x))/cos(x)