Mister Exam

Other calculators:

Limit of the function x^2*y^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 2  2\
 lim \x *y /
y->3+       
$$\lim_{y \to 3^+}\left(x^{2} y^{2}\right)$$
Limit(x^2*y^2, y, 3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
   2
9*x 
$$9 x^{2}$$
One‐sided limits [src]
     / 2  2\
 lim \x *y /
y->3+       
$$\lim_{y \to 3^+}\left(x^{2} y^{2}\right)$$
   2
9*x 
$$9 x^{2}$$
     / 2  2\
 lim \x *y /
y->3-       
$$\lim_{y \to 3^-}\left(x^{2} y^{2}\right)$$
   2
9*x 
$$9 x^{2}$$
9*x^2
Other limits y→0, -oo, +oo, 1
$$\lim_{y \to 3^-}\left(x^{2} y^{2}\right) = 9 x^{2}$$
More at y→3 from the left
$$\lim_{y \to 3^+}\left(x^{2} y^{2}\right) = 9 x^{2}$$
$$\lim_{y \to \infty}\left(x^{2} y^{2}\right) = \infty \operatorname{sign}{\left(x^{2} \right)}$$
More at y→oo
$$\lim_{y \to 0^-}\left(x^{2} y^{2}\right) = 0$$
More at y→0 from the left
$$\lim_{y \to 0^+}\left(x^{2} y^{2}\right) = 0$$
More at y→0 from the right
$$\lim_{y \to 1^-}\left(x^{2} y^{2}\right) = x^{2}$$
More at y→1 from the left
$$\lim_{y \to 1^+}\left(x^{2} y^{2}\right) = x^{2}$$
More at y→1 from the right
$$\lim_{y \to -\infty}\left(x^{2} y^{2}\right) = \infty \operatorname{sign}{\left(x^{2} \right)}$$
More at y→-oo