$$\lim_{x \to 0^-}\left(x^{2} \log{\left(x^{2} \right)}\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(x^{2} \log{\left(x^{2} \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(x^{2} \log{\left(x^{2} \right)}\right) = \infty$$
More at x→oo$$\lim_{x \to 1^-}\left(x^{2} \log{\left(x^{2} \right)}\right) = 0$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(x^{2} \log{\left(x^{2} \right)}\right) = 0$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(x^{2} \log{\left(x^{2} \right)}\right) = \infty$$
More at x→-oo