Mister Exam

Other calculators:


x^2*log(x^2)

Limit of the function x^2*log(x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 2    / 2\\
 lim \x *log\x //
x->0+            
$$\lim_{x \to 0^+}\left(x^{2} \log{\left(x^{2} \right)}\right)$$
Limit(x^2*log(x^2), x, 0)
The graph
One‐sided limits [src]
     / 2    / 2\\
 lim \x *log\x //
x->0+            
$$\lim_{x \to 0^+}\left(x^{2} \log{\left(x^{2} \right)}\right)$$
0
$$0$$
= -1.593942428042e-6
     / 2    / 2\\
 lim \x *log\x //
x->0-            
$$\lim_{x \to 0^-}\left(x^{2} \log{\left(x^{2} \right)}\right)$$
0
$$0$$
= -1.593942428042e-6
= -1.593942428042e-6
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x^{2} \log{\left(x^{2} \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{2} \log{\left(x^{2} \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(x^{2} \log{\left(x^{2} \right)}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(x^{2} \log{\left(x^{2} \right)}\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{2} \log{\left(x^{2} \right)}\right) = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{2} \log{\left(x^{2} \right)}\right) = \infty$$
More at x→-oo
Numerical answer [src]
-1.593942428042e-6
-1.593942428042e-6
The graph
Limit of the function x^2*log(x^2)