Mister Exam

Other calculators:


x^2*log(2*x)

Limit of the function x^2*log(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 2         \
 lim \x *log(2*x)/
x->0+             
$$\lim_{x \to 0^+}\left(x^{2} \log{\left(2 x \right)}\right)$$
Limit(x^2*log(2*x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x^{2} \log{\left(2 x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{2} \log{\left(2 x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(x^{2} \log{\left(2 x \right)}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(x^{2} \log{\left(2 x \right)}\right) = \log{\left(2 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{2} \log{\left(2 x \right)}\right) = \log{\left(2 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{2} \log{\left(2 x \right)}\right) = \infty$$
More at x→-oo
One‐sided limits [src]
     / 2         \
 lim \x *log(2*x)/
x->0+             
$$\lim_{x \to 0^+}\left(x^{2} \log{\left(2 x \right)}\right)$$
0
$$0$$
= -7.10650090666474e-7
     / 2         \
 lim \x *log(2*x)/
x->0-             
$$\lim_{x \to 0^-}\left(x^{2} \log{\left(2 x \right)}\right)$$
0
$$0$$
= (-7.38794385802473e-7 + 3.52411446919995e-7j)
= (-7.38794385802473e-7 + 3.52411446919995e-7j)
Numerical answer [src]
-7.10650090666474e-7
-7.10650090666474e-7
The graph
Limit of the function x^2*log(2*x)