Mister Exam

Other calculators:


((6+x)/(4+x))^(1+x)

Limit of the function ((6+x)/(4+x))^(1+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
            1 + x
     /6 + x\     
 lim |-----|     
x->oo\4 + x/     
$$\lim_{x \to \infty} \left(\frac{x + 6}{x + 4}\right)^{x + 1}$$
Limit(((6 + x)/(4 + x))^(1 + x), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty} \left(\frac{x + 6}{x + 4}\right)^{x + 1}$$
transform
$$\lim_{x \to \infty} \left(\frac{x + 6}{x + 4}\right)^{x + 1}$$
=
$$\lim_{x \to \infty} \left(\frac{\left(x + 4\right) + 2}{x + 4}\right)^{x + 1}$$
=
$$\lim_{x \to \infty} \left(\frac{x + 4}{x + 4} + \frac{2}{x + 4}\right)^{x + 1}$$
=
$$\lim_{x \to \infty} \left(1 + \frac{2}{x + 4}\right)^{x + 1}$$
=
do replacement
$$u = \frac{x + 4}{2}$$
then
$$\lim_{x \to \infty} \left(1 + \frac{2}{x + 4}\right)^{x + 1}$$ =
=
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{2 u - 3}$$
=
$$\lim_{u \to \infty}\left(\frac{\left(1 + \frac{1}{u}\right)^{2 u}}{\left(1 + \frac{1}{u}\right)^{3}}\right)$$
=
$$\lim_{u \to \infty} \frac{1}{\left(1 + \frac{1}{u}\right)^{3}} \lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{2 u}$$
=
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{2 u}$$
=
$$\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{2}$$
The limit
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}$$
is second remarkable limit, is equal to e ~ 2.718281828459045
then
$$\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{2} = e^{2}$$

The final answer:
$$\lim_{x \to \infty} \left(\frac{x + 6}{x + 4}\right)^{x + 1} = e^{2}$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
 2
e 
$$e^{2}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \left(\frac{x + 6}{x + 4}\right)^{x + 1} = e^{2}$$
$$\lim_{x \to 0^-} \left(\frac{x + 6}{x + 4}\right)^{x + 1} = \frac{3}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(\frac{x + 6}{x + 4}\right)^{x + 1} = \frac{3}{2}$$
More at x→0 from the right
$$\lim_{x \to 1^-} \left(\frac{x + 6}{x + 4}\right)^{x + 1} = \frac{49}{25}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(\frac{x + 6}{x + 4}\right)^{x + 1} = \frac{49}{25}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(\frac{x + 6}{x + 4}\right)^{x + 1} = e^{2}$$
More at x→-oo
The graph
Limit of the function ((6+x)/(4+x))^(1+x)