Mister Exam

Other calculators:


x^2-x^4

Limit of the function x^2-x^4

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 2    4\
 lim \x  - x /
x->1+         
limx1+(x4+x2)\lim_{x \to 1^+}\left(- x^{4} + x^{2}\right)
Limit(x^2 - x^4, x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-2.0-1.5-1.0-0.52.00.00.51.01.5-2010
One‐sided limits [src]
     / 2    4\
 lim \x  - x /
x->1+         
limx1+(x4+x2)\lim_{x \to 1^+}\left(- x^{4} + x^{2}\right)
0
00
= 1.63602817918362e-31
     / 2    4\
 lim \x  - x /
x->1-         
limx1(x4+x2)\lim_{x \to 1^-}\left(- x^{4} + x^{2}\right)
0
00
= 4.37637022617069e-30
= 4.37637022617069e-30
Other limits x→0, -oo, +oo, 1
limx1(x4+x2)=0\lim_{x \to 1^-}\left(- x^{4} + x^{2}\right) = 0
More at x→1 from the left
limx1+(x4+x2)=0\lim_{x \to 1^+}\left(- x^{4} + x^{2}\right) = 0
limx(x4+x2)=\lim_{x \to \infty}\left(- x^{4} + x^{2}\right) = -\infty
More at x→oo
limx0(x4+x2)=0\lim_{x \to 0^-}\left(- x^{4} + x^{2}\right) = 0
More at x→0 from the left
limx0+(x4+x2)=0\lim_{x \to 0^+}\left(- x^{4} + x^{2}\right) = 0
More at x→0 from the right
limx(x4+x2)=\lim_{x \to -\infty}\left(- x^{4} + x^{2}\right) = -\infty
More at x→-oo
Rapid solution [src]
0
00
Numerical answer [src]
1.63602817918362e-31
1.63602817918362e-31
The graph
Limit of the function x^2-x^4