Mister Exam

Other calculators:


x/(x-4*x^2)

Limit of the function x/(x-4*x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   x    \
 lim |--------|
x->0+|       2|
     \x - 4*x /
limx0+(x4x2+x)\lim_{x \to 0^+}\left(\frac{x}{- 4 x^{2} + x}\right)
Limit(x/(x - 4*x^2), x, 0)
Detail solution
Let's take the limit
limx0+(x4x2+x)\lim_{x \to 0^+}\left(\frac{x}{- 4 x^{2} + x}\right)
transform
limx0+(x4x2+x)\lim_{x \to 0^+}\left(\frac{x}{- 4 x^{2} + x}\right)
=
limx0+(x(1)x(4x1))\lim_{x \to 0^+}\left(\frac{x}{\left(-1\right) x \left(4 x - 1\right)}\right)
=
limx0+(14x1)=\lim_{x \to 0^+}\left(- \frac{1}{4 x - 1}\right) =
11+40=- \frac{1}{-1 + 4 \cdot 0} =
= 1

The final answer:
limx0+(x4x2+x)=1\lim_{x \to 0^+}\left(\frac{x}{- 4 x^{2} + x}\right) = 1
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10105-5
Rapid solution [src]
1
11
One‐sided limits [src]
     /   x    \
 lim |--------|
x->0+|       2|
     \x - 4*x /
limx0+(x4x2+x)\lim_{x \to 0^+}\left(\frac{x}{- 4 x^{2} + x}\right)
1
11
     /   x    \
 lim |--------|
x->0-|       2|
     \x - 4*x /
limx0(x4x2+x)\lim_{x \to 0^-}\left(\frac{x}{- 4 x^{2} + x}\right)
1
11
= 1
= 1
Other limits x→0, -oo, +oo, 1
limx0(x4x2+x)=1\lim_{x \to 0^-}\left(\frac{x}{- 4 x^{2} + x}\right) = 1
More at x→0 from the left
limx0+(x4x2+x)=1\lim_{x \to 0^+}\left(\frac{x}{- 4 x^{2} + x}\right) = 1
limx(x4x2+x)=0\lim_{x \to \infty}\left(\frac{x}{- 4 x^{2} + x}\right) = 0
More at x→oo
limx1(x4x2+x)=13\lim_{x \to 1^-}\left(\frac{x}{- 4 x^{2} + x}\right) = - \frac{1}{3}
More at x→1 from the left
limx1+(x4x2+x)=13\lim_{x \to 1^+}\left(\frac{x}{- 4 x^{2} + x}\right) = - \frac{1}{3}
More at x→1 from the right
limx(x4x2+x)=0\lim_{x \to -\infty}\left(\frac{x}{- 4 x^{2} + x}\right) = 0
More at x→-oo
The graph
Limit of the function x/(x-4*x^2)