$$\lim_{x \to \infty}\left(\frac{x^{2}}{y^{2}}\right) = \infty \operatorname{sign}{\left(\frac{1}{y^{2}} \right)}$$
$$\lim_{x \to 0^-}\left(\frac{x^{2}}{y^{2}}\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{x^{2}}{y^{2}}\right) = 0$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\frac{x^{2}}{y^{2}}\right) = \frac{1}{y^{2}}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{x^{2}}{y^{2}}\right) = \frac{1}{y^{2}}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{x^{2}}{y^{2}}\right) = \infty \operatorname{sign}{\left(\frac{1}{y^{2}} \right)}$$
More at x→-oo