Mister Exam

Other calculators:


x^2/4

Limit of the function x^2/4

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 2\
     |x |
 lim |--|
x->0+\4 /
$$\lim_{x \to 0^+}\left(\frac{x^{2}}{4}\right)$$
Limit(x^2/4, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
     / 2\
     |x |
 lim |--|
x->0+\4 /
$$\lim_{x \to 0^+}\left(\frac{x^{2}}{4}\right)$$
0
$$0$$
= -2.42076449987718e-32
     / 2\
     |x |
 lim |--|
x->0-\4 /
$$\lim_{x \to 0^-}\left(\frac{x^{2}}{4}\right)$$
0
$$0$$
= -2.42076449987718e-32
= -2.42076449987718e-32
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{x^{2}}{4}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x^{2}}{4}\right) = 0$$
$$\lim_{x \to \infty}\left(\frac{x^{2}}{4}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{x^{2}}{4}\right) = \frac{1}{4}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x^{2}}{4}\right) = \frac{1}{4}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x^{2}}{4}\right) = \infty$$
More at x→-oo
Numerical answer [src]
-2.42076449987718e-32
-2.42076449987718e-32
The graph
Limit of the function x^2/4