Mister Exam

Other calculators:


4*x^2/(x^2-x)

Limit of the function 4*x^2/(x^2-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /    2 \
     | 4*x  |
 lim |------|
x->0+| 2    |
     \x  - x/
$$\lim_{x \to 0^+}\left(\frac{4 x^{2}}{x^{2} - x}\right)$$
Limit((4*x^2)/(x^2 - x), x, 0)
Detail solution
Let's take the limit
$$\lim_{x \to 0^+}\left(\frac{4 x^{2}}{x^{2} - x}\right)$$
transform
$$\lim_{x \to 0^+}\left(\frac{4 x^{2}}{x^{2} - x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{4 x^{2}}{x \left(x - 1\right)}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{4 x}{x - 1}\right) = $$
$$\frac{0 \cdot 4}{-1} = $$
= 0

The final answer:
$$\lim_{x \to 0^+}\left(\frac{4 x^{2}}{x^{2} - x}\right) = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{4 x^{2}}{x^{2} - x}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{4 x^{2}}{x^{2} - x}\right) = 0$$
$$\lim_{x \to \infty}\left(\frac{4 x^{2}}{x^{2} - x}\right) = 4$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{4 x^{2}}{x^{2} - x}\right) = -\infty$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{4 x^{2}}{x^{2} - x}\right) = \infty$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{4 x^{2}}{x^{2} - x}\right) = 4$$
More at x→-oo
One‐sided limits [src]
     /    2 \
     | 4*x  |
 lim |------|
x->0+| 2    |
     \x  - x/
$$\lim_{x \to 0^+}\left(\frac{4 x^{2}}{x^{2} - x}\right)$$
0
$$0$$
= -2.38544570312941e-29
     /    2 \
     | 4*x  |
 lim |------|
x->0-| 2    |
     \x  - x/
$$\lim_{x \to 0^-}\left(\frac{4 x^{2}}{x^{2} - x}\right)$$
0
$$0$$
= 2.93727144208228e-28
= 2.93727144208228e-28
Rapid solution [src]
0
$$0$$
Numerical answer [src]
-2.38544570312941e-29
-2.38544570312941e-29
The graph
Limit of the function 4*x^2/(x^2-x)