Mister Exam

Other calculators:


x^2/8

Limit of the function x^2/8

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 2\
     |x |
 lim |--|
x->2+\8 /
$$\lim_{x \to 2^+}\left(\frac{x^{2}}{8}\right)$$
Limit(x^2/8, x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-}\left(\frac{x^{2}}{8}\right) = \frac{1}{2}$$
More at x→2 from the left
$$\lim_{x \to 2^+}\left(\frac{x^{2}}{8}\right) = \frac{1}{2}$$
$$\lim_{x \to \infty}\left(\frac{x^{2}}{8}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x^{2}}{8}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x^{2}}{8}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x^{2}}{8}\right) = \frac{1}{8}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x^{2}}{8}\right) = \frac{1}{8}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x^{2}}{8}\right) = \infty$$
More at x→-oo
Rapid solution [src]
1/2
$$\frac{1}{2}$$
One‐sided limits [src]
     / 2\
     |x |
 lim |--|
x->2+\8 /
$$\lim_{x \to 2^+}\left(\frac{x^{2}}{8}\right)$$
1/2
$$\frac{1}{2}$$
= 0.5
     / 2\
     |x |
 lim |--|
x->2-\8 /
$$\lim_{x \to 2^-}\left(\frac{x^{2}}{8}\right)$$
1/2
$$\frac{1}{2}$$
= 0.5
= 0.5
Numerical answer [src]
0.5
0.5
The graph
Limit of the function x^2/8