Mister Exam

Other calculators:

Limit of the function (-1+x^m)/(-1+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /      m\
     |-1 + x |
 lim |-------|
x->1+\ -1 + x/
$$\lim_{x \to 1^+}\left(\frac{x^{m} - 1}{x - 1}\right)$$
Limit((-1 + x^m)/(-1 + x), x, 1)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 1^+}\left(x^{m} - 1\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 1^+}\left(x - 1\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 1^+}\left(\frac{x^{m} - 1}{x - 1}\right)$$
=
$$\lim_{x \to 1^+}\left(\frac{x^{m} - 1}{x - 1}\right)$$
=
$$m$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 0 time(s)
Rapid solution [src]
m
$$m$$
One‐sided limits [src]
     /      m\
     |-1 + x |
 lim |-------|
x->1+\ -1 + x/
$$\lim_{x \to 1^+}\left(\frac{x^{m} - 1}{x - 1}\right)$$
m
$$m$$
     /      m\
     |-1 + x |
 lim |-------|
x->1-\ -1 + x/
$$\lim_{x \to 1^-}\left(\frac{x^{m} - 1}{x - 1}\right)$$
m
$$m$$
m
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(\frac{x^{m} - 1}{x - 1}\right) = m$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x^{m} - 1}{x - 1}\right) = m$$
$$\lim_{x \to \infty}\left(\frac{x^{m} - 1}{x - 1}\right)$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x^{m} - 1}{x - 1}\right)$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x^{m} - 1}{x - 1}\right)$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(\frac{x^{m} - 1}{x - 1}\right)$$
More at x→-oo