Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 10+x^2+3*x^3+8*x
Limit of (-2+sqrt(x))/(-4+x^2)
Limit of x+2*x^3+5*x^4-x^2/3
Limit of (-x^3+2*x+5*x^4)/(1+x^4-8*x^3)
Factor polynomial
:
x^3+x^5
Graphing y =
:
x^3+x^5
Identical expressions
x^ three +x^ five
x cubed plus x to the power of 5
x to the power of three plus x to the power of five
x3+x5
x³+x⁵
x to the power of 3+x to the power of 5
Similar expressions
x^3-x^5
(x^3+x^5-4*x)/(3+x^3-x)
Limit of the function
/
x^3+x^5
Limit of the function x^3+x^5
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 3 5\ lim \x + x / x->oo
$$\lim_{x \to \infty}\left(x^{5} + x^{3}\right)$$
Limit(x^3 + x^5, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(x^{5} + x^{3}\right)$$
Let's divide numerator and denominator by x^5:
$$\lim_{x \to \infty}\left(x^{5} + x^{3}\right)$$ =
$$\lim_{x \to \infty}\left(\frac{1 + \frac{1}{x^{2}}}{\frac{1}{x^{5}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1 + \frac{1}{x^{2}}}{\frac{1}{x^{5}}}\right) = \lim_{u \to 0^+}\left(\frac{u^{2} + 1}{u^{5}}\right)$$
=
$$\frac{0^{2} + 1}{0} = \infty$$
The final answer:
$$\lim_{x \to \infty}\left(x^{5} + x^{3}\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(x^{5} + x^{3}\right) = \infty$$
$$\lim_{x \to 0^-}\left(x^{5} + x^{3}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{5} + x^{3}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x^{5} + x^{3}\right) = 2$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{5} + x^{3}\right) = 2$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{5} + x^{3}\right) = -\infty$$
More at x→-oo
The graph