Mister Exam

Other calculators:


x^(3*x)

Limit of the function x^(3*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      3*x
 lim x   
x->0+    
$$\lim_{x \to 0^+} x^{3 x}$$
Limit(x^(3*x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
      3*x
 lim x   
x->0+    
$$\lim_{x \to 0^+} x^{3 x}$$
1
$$1$$
= 0.994504528835634
      3*x
 lim x   
x->0-    
$$\lim_{x \to 0^-} x^{3 x}$$
1
$$1$$
= (1.00577588432051 - 0.00259560438209252j)
= (1.00577588432051 - 0.00259560438209252j)
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} x^{3 x} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} x^{3 x} = 1$$
$$\lim_{x \to \infty} x^{3 x} = \infty$$
More at x→oo
$$\lim_{x \to 1^-} x^{3 x} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} x^{3 x} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} x^{3 x} = \infty$$
More at x→-oo
Numerical answer [src]
0.994504528835634
0.994504528835634
The graph
Limit of the function x^(3*x)