Mister Exam

Other calculators:


x^3*(2-x)

Limit of the function x^3*(2-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 3        \
 lim \x *(2 - x)/
x->oo            
$$\lim_{x \to \infty}\left(x^{3} \left(2 - x\right)\right)$$
Limit(x^3*(2 - x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(x^{3} \left(2 - x\right)\right) = -\infty$$
$$\lim_{x \to 0^-}\left(x^{3} \left(2 - x\right)\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{3} \left(2 - x\right)\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x^{3} \left(2 - x\right)\right) = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{3} \left(2 - x\right)\right) = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{3} \left(2 - x\right)\right) = -\infty$$
More at x→-oo
The graph
Limit of the function x^3*(2-x)