Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 7-2*x
Limit of (4+x^2-5*x)/(-16+x^2)
Limit of (2-7*x+3*x^2)/(2-5*x+2*x^2)
Limit of (-1+x)/(-1+x^3)
Derivative of
:
x^3*atan(x)
Identical expressions
x^ three *atan(x)
x cubed multiply by arc tangent of gent of (x)
x to the power of three multiply by arc tangent of gent of (x)
x3*atan(x)
x3*atanx
x³*atan(x)
x to the power of 3*atan(x)
x^3atan(x)
x3atan(x)
x3atanx
x^3atanx
Similar expressions
x^3*arctan(x)
x^3*arctanx
Limit of the function
/
x^3*atan(x)
Limit of the function x^3*atan(x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 3 \ lim \x *atan(x)/ x->oo
lim
x
→
∞
(
x
3
atan
(
x
)
)
\lim_{x \to \infty}\left(x^{3} \operatorname{atan}{\left(x \right)}\right)
x
→
∞
lim
(
x
3
atan
(
x
)
)
Limit(x^3*atan(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
2000
Plot the graph
Rapid solution
[src]
oo
∞
\infty
∞
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
x
3
atan
(
x
)
)
=
∞
\lim_{x \to \infty}\left(x^{3} \operatorname{atan}{\left(x \right)}\right) = \infty
x
→
∞
lim
(
x
3
atan
(
x
)
)
=
∞
lim
x
→
0
−
(
x
3
atan
(
x
)
)
=
0
\lim_{x \to 0^-}\left(x^{3} \operatorname{atan}{\left(x \right)}\right) = 0
x
→
0
−
lim
(
x
3
atan
(
x
)
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
x
3
atan
(
x
)
)
=
0
\lim_{x \to 0^+}\left(x^{3} \operatorname{atan}{\left(x \right)}\right) = 0
x
→
0
+
lim
(
x
3
atan
(
x
)
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
x
3
atan
(
x
)
)
=
π
4
\lim_{x \to 1^-}\left(x^{3} \operatorname{atan}{\left(x \right)}\right) = \frac{\pi}{4}
x
→
1
−
lim
(
x
3
atan
(
x
)
)
=
4
π
More at x→1 from the left
lim
x
→
1
+
(
x
3
atan
(
x
)
)
=
π
4
\lim_{x \to 1^+}\left(x^{3} \operatorname{atan}{\left(x \right)}\right) = \frac{\pi}{4}
x
→
1
+
lim
(
x
3
atan
(
x
)
)
=
4
π
More at x→1 from the right
lim
x
→
−
∞
(
x
3
atan
(
x
)
)
=
∞
\lim_{x \to -\infty}\left(x^{3} \operatorname{atan}{\left(x \right)}\right) = \infty
x
→
−
∞
lim
(
x
3
atan
(
x
)
)
=
∞
More at x→-oo
The graph