Mister Exam

Other calculators:


x^3*atan(x)

Limit of the function x^3*atan(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 3        \
 lim \x *atan(x)/
x->oo            
limx(x3atan(x))\lim_{x \to \infty}\left(x^{3} \operatorname{atan}{\left(x \right)}\right)
Limit(x^3*atan(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-101002000
Rapid solution [src]
oo
\infty
Other limits x→0, -oo, +oo, 1
limx(x3atan(x))=\lim_{x \to \infty}\left(x^{3} \operatorname{atan}{\left(x \right)}\right) = \infty
limx0(x3atan(x))=0\lim_{x \to 0^-}\left(x^{3} \operatorname{atan}{\left(x \right)}\right) = 0
More at x→0 from the left
limx0+(x3atan(x))=0\lim_{x \to 0^+}\left(x^{3} \operatorname{atan}{\left(x \right)}\right) = 0
More at x→0 from the right
limx1(x3atan(x))=π4\lim_{x \to 1^-}\left(x^{3} \operatorname{atan}{\left(x \right)}\right) = \frac{\pi}{4}
More at x→1 from the left
limx1+(x3atan(x))=π4\lim_{x \to 1^+}\left(x^{3} \operatorname{atan}{\left(x \right)}\right) = \frac{\pi}{4}
More at x→1 from the right
limx(x3atan(x))=\lim_{x \to -\infty}\left(x^{3} \operatorname{atan}{\left(x \right)}\right) = \infty
More at x→-oo
The graph
Limit of the function x^3*atan(x)