Mister Exam

Other calculators:


x^3-6*x^2

Limit of the function x^3-6*x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 3      2\
 lim \x  - 6*x /
x->0+           
$$\lim_{x \to 0^+}\left(x^{3} - 6 x^{2}\right)$$
Limit(x^3 - 6*x^2, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
     / 3      2\
 lim \x  - 6*x /
x->0+           
$$\lim_{x \to 0^+}\left(x^{3} - 6 x^{2}\right)$$
0
$$0$$
= 1.10330120971338e-30
     / 3      2\
 lim \x  - 6*x /
x->0-           
$$\lim_{x \to 0^-}\left(x^{3} - 6 x^{2}\right)$$
0
$$0$$
= 5.86657502276647e-32
= 5.86657502276647e-32
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x^{3} - 6 x^{2}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{3} - 6 x^{2}\right) = 0$$
$$\lim_{x \to \infty}\left(x^{3} - 6 x^{2}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(x^{3} - 6 x^{2}\right) = -5$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{3} - 6 x^{2}\right) = -5$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{3} - 6 x^{2}\right) = -\infty$$
More at x→-oo
Numerical answer [src]
1.10330120971338e-30
1.10330120971338e-30
The graph
Limit of the function x^3-6*x^2