$$\lim_{n \to \infty}\left(\frac{x^{n}}{x^{n} + 1}\right)$$ $$\lim_{n \to 0^-}\left(\frac{x^{n}}{x^{n} + 1}\right) = \frac{1}{2}$$ More at n→0 from the left $$\lim_{n \to 0^+}\left(\frac{x^{n}}{x^{n} + 1}\right) = \frac{1}{2}$$ More at n→0 from the right $$\lim_{n \to 1^-}\left(\frac{x^{n}}{x^{n} + 1}\right) = \frac{x}{x + 1}$$ More at n→1 from the left $$\lim_{n \to 1^+}\left(\frac{x^{n}}{x^{n} + 1}\right) = \frac{x}{x + 1}$$ More at n→1 from the right $$\lim_{n \to -\infty}\left(\frac{x^{n}}{x^{n} + 1}\right)$$ More at n→-oo