Mister Exam

Other calculators:

Limit of the function x^n/(1+x^n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   n  \
     |  x   |
 lim |------|
n->oo|     n|
     \1 + x /
$$\lim_{n \to \infty}\left(\frac{x^{n}}{x^{n} + 1}\right)$$
Limit(x^n/(1 + x^n), n, oo, dir='-')
Rapid solution [src]
None
None
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(\frac{x^{n}}{x^{n} + 1}\right)$$
$$\lim_{n \to 0^-}\left(\frac{x^{n}}{x^{n} + 1}\right) = \frac{1}{2}$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(\frac{x^{n}}{x^{n} + 1}\right) = \frac{1}{2}$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(\frac{x^{n}}{x^{n} + 1}\right) = \frac{x}{x + 1}$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(\frac{x^{n}}{x^{n} + 1}\right) = \frac{x}{x + 1}$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(\frac{x^{n}}{x^{n} + 1}\right)$$
More at n→-oo