Mister Exam

Other calculators:


(-1+x)/log(x)

Limit of the function (-1+x)/log(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /-1 + x\
 lim |------|
x->1+\log(x)/
$$\lim_{x \to 1^+}\left(\frac{x - 1}{\log{\left(x \right)}}\right)$$
Limit((-1 + x)/log(x), x, 1)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 1^+}\left(x - 1\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 1^+} \log{\left(x \right)} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 1^+}\left(\frac{x - 1}{\log{\left(x \right)}}\right)$$
=
$$\lim_{x \to 1^+}\left(\frac{\frac{d}{d x} \left(x - 1\right)}{\frac{d}{d x} \log{\left(x \right)}}\right)$$
=
$$\lim_{x \to 1^+} x$$
=
$$\lim_{x \to 1^+} x$$
=
$$1$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
One‐sided limits [src]
     /-1 + x\
 lim |------|
x->1+\log(x)/
$$\lim_{x \to 1^+}\left(\frac{x - 1}{\log{\left(x \right)}}\right)$$
1
$$1$$
= 1.0
     /-1 + x\
 lim |------|
x->1-\log(x)/
$$\lim_{x \to 1^-}\left(\frac{x - 1}{\log{\left(x \right)}}\right)$$
1
$$1$$
= 1.0
= 1.0
Rapid solution [src]
1
$$1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(\frac{x - 1}{\log{\left(x \right)}}\right) = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x - 1}{\log{\left(x \right)}}\right) = 1$$
$$\lim_{x \to \infty}\left(\frac{x - 1}{\log{\left(x \right)}}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x - 1}{\log{\left(x \right)}}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x - 1}{\log{\left(x \right)}}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(\frac{x - 1}{\log{\left(x \right)}}\right) = -\infty$$
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function (-1+x)/log(x)