Mister Exam

Other calculators:

Limit of the function x^n/(1-x^n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   n  \
     |  x   |
 lim |------|
x->oo|     n|
     \1 - x /
$$\lim_{x \to \infty}\left(\frac{x^{n}}{1 - x^{n}}\right)$$
Limit(x^n/(1 - x^n), x, oo, dir='-')
Rapid solution [src]
None
None
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{x^{n}}{1 - x^{n}}\right)$$
$$\lim_{x \to 0^-}\left(\frac{x^{n}}{1 - x^{n}}\right)$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x^{n}}{1 - x^{n}}\right)$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x^{n}}{1 - x^{n}}\right) = \infty \operatorname{sign}{\left(\frac{1}{n} \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x^{n}}{1 - x^{n}}\right) = - \infty \operatorname{sign}{\left(\frac{1}{n} \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x^{n}}{1 - x^{n}}\right)$$
More at x→-oo