$$\lim_{x \to \infty}\left(\frac{x^{n}}{1 - x^{n}}\right)$$ $$\lim_{x \to 0^-}\left(\frac{x^{n}}{1 - x^{n}}\right)$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(\frac{x^{n}}{1 - x^{n}}\right)$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(\frac{x^{n}}{1 - x^{n}}\right) = \infty \operatorname{sign}{\left(\frac{1}{n} \right)}$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(\frac{x^{n}}{1 - x^{n}}\right) = - \infty \operatorname{sign}{\left(\frac{1}{n} \right)}$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(\frac{x^{n}}{1 - x^{n}}\right)$$ More at x→-oo