Mister Exam

Other calculators:


x^(-3/(2*x))

Limit of the function x^(-3/(2*x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      -3 
      ---
      2*x
 lim x   
x->oo    
$$\lim_{x \to \infty} x^{- \frac{3}{2 x}}$$
Limit(x^(-3*1/(2*x)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} x^{- \frac{3}{2 x}} = 1$$
$$\lim_{x \to 0^-} x^{- \frac{3}{2 x}} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} x^{- \frac{3}{2 x}} = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-} x^{- \frac{3}{2 x}} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} x^{- \frac{3}{2 x}} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} x^{- \frac{3}{2 x}} = 1$$
More at x→-oo
The graph
Limit of the function x^(-3/(2*x))