Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of x^2/(3+x^3-4*x)
Limit of ((1+x)/(2+x))^(1+x)
Limit of ((1+x)^3-(-1+x)^3)/(1+x^2)
Limit of ((1+x)^3+(2+x)^3)/((4+x)^3+(5+x)^3)
Identical expressions
x^(- three /(two *x))
x to the power of ( minus 3 divide by (2 multiply by x))
x to the power of ( minus three divide by (two multiply by x))
x(-3/(2*x))
x-3/2*x
x^(-3/(2x))
x(-3/(2x))
x-3/2x
x^-3/2x
x^(-3 divide by (2*x))
Similar expressions
x^(3/(2*x))
Limit of the function
/
x^(-3/(2*x))
Limit of the function x^(-3/(2*x))
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
-3 --- 2*x lim x x->oo
lim
x
→
∞
x
−
3
2
x
\lim_{x \to \infty} x^{- \frac{3}{2 x}}
x
→
∞
lim
x
−
2
x
3
Limit(x^(-3*1/(2*x)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
1000000000000000
Plot the graph
Rapid solution
[src]
1
1
1
1
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
x
−
3
2
x
=
1
\lim_{x \to \infty} x^{- \frac{3}{2 x}} = 1
x
→
∞
lim
x
−
2
x
3
=
1
lim
x
→
0
−
x
−
3
2
x
=
0
\lim_{x \to 0^-} x^{- \frac{3}{2 x}} = 0
x
→
0
−
lim
x
−
2
x
3
=
0
More at x→0 from the left
lim
x
→
0
+
x
−
3
2
x
=
∞
\lim_{x \to 0^+} x^{- \frac{3}{2 x}} = \infty
x
→
0
+
lim
x
−
2
x
3
=
∞
More at x→0 from the right
lim
x
→
1
−
x
−
3
2
x
=
1
\lim_{x \to 1^-} x^{- \frac{3}{2 x}} = 1
x
→
1
−
lim
x
−
2
x
3
=
1
More at x→1 from the left
lim
x
→
1
+
x
−
3
2
x
=
1
\lim_{x \to 1^+} x^{- \frac{3}{2 x}} = 1
x
→
1
+
lim
x
−
2
x
3
=
1
More at x→1 from the right
lim
x
→
−
∞
x
−
3
2
x
=
1
\lim_{x \to -\infty} x^{- \frac{3}{2 x}} = 1
x
→
−
∞
lim
x
−
2
x
3
=
1
More at x→-oo
The graph