Mister Exam

Other calculators:


x^(-3/(2*x))

Limit of the function x^(-3/(2*x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      -3 
      ---
      2*x
 lim x   
x->oo    
limxx32x\lim_{x \to \infty} x^{- \frac{3}{2 x}}
Limit(x^(-3*1/(2*x)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-101001000000000000000
Rapid solution [src]
1
11
Other limits x→0, -oo, +oo, 1
limxx32x=1\lim_{x \to \infty} x^{- \frac{3}{2 x}} = 1
limx0x32x=0\lim_{x \to 0^-} x^{- \frac{3}{2 x}} = 0
More at x→0 from the left
limx0+x32x=\lim_{x \to 0^+} x^{- \frac{3}{2 x}} = \infty
More at x→0 from the right
limx1x32x=1\lim_{x \to 1^-} x^{- \frac{3}{2 x}} = 1
More at x→1 from the left
limx1+x32x=1\lim_{x \to 1^+} x^{- \frac{3}{2 x}} = 1
More at x→1 from the right
limxx32x=1\lim_{x \to -\infty} x^{- \frac{3}{2 x}} = 1
More at x→-oo
The graph
Limit of the function x^(-3/(2*x))