Mister Exam

Other calculators:


x^4+2*x^2

Limit of the function x^4+2*x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      / 4      2\
 lim  \x  + 2*x /
x->-oo           
$$\lim_{x \to -\infty}\left(x^{4} + 2 x^{2}\right)$$
Limit(x^4 + 2*x^2, x, -oo)
Detail solution
Let's take the limit
$$\lim_{x \to -\infty}\left(x^{4} + 2 x^{2}\right)$$
Let's divide numerator and denominator by x^4:
$$\lim_{x \to -\infty}\left(x^{4} + 2 x^{2}\right)$$ =
$$\lim_{x \to -\infty}\left(\frac{1 + \frac{2}{x^{2}}}{\frac{1}{x^{4}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to -\infty}\left(\frac{1 + \frac{2}{x^{2}}}{\frac{1}{x^{4}}}\right) = \lim_{u \to 0^+}\left(\frac{2 u^{2} + 1}{u^{4}}\right)$$
=
$$\frac{2 \cdot 0^{2} + 1}{0} = \infty$$

The final answer:
$$\lim_{x \to -\infty}\left(x^{4} + 2 x^{2}\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(x^{4} + 2 x^{2}\right) = \infty$$
$$\lim_{x \to \infty}\left(x^{4} + 2 x^{2}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(x^{4} + 2 x^{2}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{4} + 2 x^{2}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x^{4} + 2 x^{2}\right) = 3$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{4} + 2 x^{2}\right) = 3$$
More at x→1 from the right
The graph
Limit of the function x^4+2*x^2