Mister Exam

Other calculators:


x^4*sin(x)

Limit of the function x^4*sin(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 4       \
 lim \x *sin(x)/
x->0+           
$$\lim_{x \to 0^+}\left(x^{4} \sin{\left(x \right)}\right)$$
Limit(x^4*sin(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
     / 4       \
 lim \x *sin(x)/
x->0+           
$$\lim_{x \to 0^+}\left(x^{4} \sin{\left(x \right)}\right)$$
0
$$0$$
= 2.52946104557576e-30
     / 4       \
 lim \x *sin(x)/
x->0-           
$$\lim_{x \to 0^-}\left(x^{4} \sin{\left(x \right)}\right)$$
0
$$0$$
= -2.52946104557576e-30
= -2.52946104557576e-30
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x^{4} \sin{\left(x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{4} \sin{\left(x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(x^{4} \sin{\left(x \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-}\left(x^{4} \sin{\left(x \right)}\right) = \sin{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{4} \sin{\left(x \right)}\right) = \sin{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{4} \sin{\left(x \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo
Numerical answer [src]
2.52946104557576e-30
2.52946104557576e-30
The graph
Limit of the function x^4*sin(x)