Detail solution
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
The derivative of sine is cosine:
The result is:
-
Now simplify:
The answer is:
The first derivative
[src]
4 3
x *cos(x) + 4*x *sin(x)
$$x^{4} \cos{\left(x \right)} + 4 x^{3} \sin{\left(x \right)}$$
The second derivative
[src]
2 / 2 \
x *\12*sin(x) - x *sin(x) + 8*x*cos(x)/
$$x^{2} \left(- x^{2} \sin{\left(x \right)} + 8 x \cos{\left(x \right)} + 12 \sin{\left(x \right)}\right)$$
The third derivative
[src]
/ 3 2 \
x*\24*sin(x) - x *cos(x) - 12*x *sin(x) + 36*x*cos(x)/
$$x \left(- x^{3} \cos{\left(x \right)} - 12 x^{2} \sin{\left(x \right)} + 36 x \cos{\left(x \right)} + 24 \sin{\left(x \right)}\right)$$