Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of n*(1+(1+n)^2)/((1+n)*(1+n^2))
Limit of -2+|-2+x|/x
Limit of (1+x^2+9*x)/(-5+2*x+7*x^2)
Limit of (-16+x^2+6*x)/(-2-5*x+3*x^2)
Derivative of
:
x^(4/3)
Graphing y =
:
x^(4/3)
Integral of d{x}
:
x^(4/3)
Identical expressions
x^(four / three)
x to the power of (4 divide by 3)
x to the power of (four divide by three)
x(4/3)
x4/3
x^4/3
x^(4 divide by 3)
Similar expressions
8+x^3+2*x^4/3
2-x^2-5*x^3+2*x^5-x^4/3
(1-x^2+5*x^4)/(3+x^4)
(8-x+5*x^4)/(3+x^4)
-4*x+2*x^3+5*x^2+x^4/3
Limit of the function
/
x^(4/3)
Limit of the function x^(4/3)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
4/3 lim x x->oo
lim
x
→
∞
x
4
3
\lim_{x \to \infty} x^{\frac{4}{3}}
x
→
∞
lim
x
3
4
Limit(x^(4/3), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
25
Plot the graph
Rapid solution
[src]
oo
∞
\infty
∞
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
x
4
3
=
∞
\lim_{x \to \infty} x^{\frac{4}{3}} = \infty
x
→
∞
lim
x
3
4
=
∞
lim
x
→
0
−
x
4
3
=
0
\lim_{x \to 0^-} x^{\frac{4}{3}} = 0
x
→
0
−
lim
x
3
4
=
0
More at x→0 from the left
lim
x
→
0
+
x
4
3
=
0
\lim_{x \to 0^+} x^{\frac{4}{3}} = 0
x
→
0
+
lim
x
3
4
=
0
More at x→0 from the right
lim
x
→
1
−
x
4
3
=
1
\lim_{x \to 1^-} x^{\frac{4}{3}} = 1
x
→
1
−
lim
x
3
4
=
1
More at x→1 from the left
lim
x
→
1
+
x
4
3
=
1
\lim_{x \to 1^+} x^{\frac{4}{3}} = 1
x
→
1
+
lim
x
3
4
=
1
More at x→1 from the right
lim
x
→
−
∞
x
4
3
=
−
∞
−
1
3
\lim_{x \to -\infty} x^{\frac{4}{3}} = - \infty \sqrt[3]{-1}
x
→
−
∞
lim
x
3
4
=
−
∞
3
−
1
More at x→-oo
The graph