Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-exp(-x)-2*x+exp(x))/(x-sin(x))
Limit of (7*x+8*x^3)/(4-x)
Limit of (1-x^3+5*x^4)/(x+2*x^4)
Limit of (3-3*x^2+4*x^4+6*x^3)/(2*x^2+7*x^4)
Integral of d{x}
:
x^5*sin(x)
Derivative of
:
x^5*sin(x)
Identical expressions
x^ five *sin(x)
x to the power of 5 multiply by sinus of (x)
x to the power of five multiply by sinus of (x)
x5*sin(x)
x5*sinx
x⁵*sin(x)
x^5sin(x)
x5sin(x)
x5sinx
x^5sinx
Similar expressions
x^5*sinx
Limit of the function
/
x^5*sin(x)
Limit of the function x^5*sin(x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 5 \ lim \x *sin(x)/ x->oo
lim
x
→
∞
(
x
5
sin
(
x
)
)
\lim_{x \to \infty}\left(x^{5} \sin{\left(x \right)}\right)
x
→
∞
lim
(
x
5
sin
(
x
)
)
Limit(x^5*sin(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
-100000
100000
Plot the graph
Rapid solution
[src]
<-oo, oo>
⟨
−
∞
,
∞
⟩
\left\langle -\infty, \infty\right\rangle
⟨
−
∞
,
∞
⟩
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
x
5
sin
(
x
)
)
=
⟨
−
∞
,
∞
⟩
\lim_{x \to \infty}\left(x^{5} \sin{\left(x \right)}\right) = \left\langle -\infty, \infty\right\rangle
x
→
∞
lim
(
x
5
sin
(
x
)
)
=
⟨
−
∞
,
∞
⟩
lim
x
→
0
−
(
x
5
sin
(
x
)
)
=
0
\lim_{x \to 0^-}\left(x^{5} \sin{\left(x \right)}\right) = 0
x
→
0
−
lim
(
x
5
sin
(
x
)
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
x
5
sin
(
x
)
)
=
0
\lim_{x \to 0^+}\left(x^{5} \sin{\left(x \right)}\right) = 0
x
→
0
+
lim
(
x
5
sin
(
x
)
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
x
5
sin
(
x
)
)
=
sin
(
1
)
\lim_{x \to 1^-}\left(x^{5} \sin{\left(x \right)}\right) = \sin{\left(1 \right)}
x
→
1
−
lim
(
x
5
sin
(
x
)
)
=
sin
(
1
)
More at x→1 from the left
lim
x
→
1
+
(
x
5
sin
(
x
)
)
=
sin
(
1
)
\lim_{x \to 1^+}\left(x^{5} \sin{\left(x \right)}\right) = \sin{\left(1 \right)}
x
→
1
+
lim
(
x
5
sin
(
x
)
)
=
sin
(
1
)
More at x→1 from the right
lim
x
→
−
∞
(
x
5
sin
(
x
)
)
=
⟨
−
∞
,
∞
⟩
\lim_{x \to -\infty}\left(x^{5} \sin{\left(x \right)}\right) = \left\langle -\infty, \infty\right\rangle
x
→
−
∞
lim
(
x
5
sin
(
x
)
)
=
⟨
−
∞
,
∞
⟩
More at x→-oo
The graph