Mister Exam

Other calculators

Integral of x^5*sin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |   5          
 |  x *sin(x) dx
 |              
/               
0               
01x5sin(x)dx\int\limits_{0}^{1} x^{5} \sin{\left(x \right)}\, dx
Integral(x^5*sin(x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=x5u{\left(x \right)} = x^{5} and let dv(x)=sin(x)\operatorname{dv}{\left(x \right)} = \sin{\left(x \right)}.

    Then du(x)=5x4\operatorname{du}{\left(x \right)} = 5 x^{4}.

    To find v(x)v{\left(x \right)}:

    1. The integral of sine is negative cosine:

      sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

    Now evaluate the sub-integral.

  2. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=5x4u{\left(x \right)} = - 5 x^{4} and let dv(x)=cos(x)\operatorname{dv}{\left(x \right)} = \cos{\left(x \right)}.

    Then du(x)=20x3\operatorname{du}{\left(x \right)} = - 20 x^{3}.

    To find v(x)v{\left(x \right)}:

    1. The integral of cosine is sine:

      cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

    Now evaluate the sub-integral.

  3. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=20x3u{\left(x \right)} = - 20 x^{3} and let dv(x)=sin(x)\operatorname{dv}{\left(x \right)} = \sin{\left(x \right)}.

    Then du(x)=60x2\operatorname{du}{\left(x \right)} = - 60 x^{2}.

    To find v(x)v{\left(x \right)}:

    1. The integral of sine is negative cosine:

      sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

    Now evaluate the sub-integral.

  4. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=60x2u{\left(x \right)} = 60 x^{2} and let dv(x)=cos(x)\operatorname{dv}{\left(x \right)} = \cos{\left(x \right)}.

    Then du(x)=120x\operatorname{du}{\left(x \right)} = 120 x.

    To find v(x)v{\left(x \right)}:

    1. The integral of cosine is sine:

      cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

    Now evaluate the sub-integral.

  5. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=120xu{\left(x \right)} = 120 x and let dv(x)=sin(x)\operatorname{dv}{\left(x \right)} = \sin{\left(x \right)}.

    Then du(x)=120\operatorname{du}{\left(x \right)} = 120.

    To find v(x)v{\left(x \right)}:

    1. The integral of sine is negative cosine:

      sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

    Now evaluate the sub-integral.

  6. The integral of a constant times a function is the constant times the integral of the function:

    (120cos(x))dx=120cos(x)dx\int \left(- 120 \cos{\left(x \right)}\right)\, dx = - 120 \int \cos{\left(x \right)}\, dx

    1. The integral of cosine is sine:

      cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

    So, the result is: 120sin(x)- 120 \sin{\left(x \right)}

  7. Add the constant of integration:

    x5cos(x)+5x4sin(x)+20x3cos(x)60x2sin(x)120xcos(x)+120sin(x)+constant- x^{5} \cos{\left(x \right)} + 5 x^{4} \sin{\left(x \right)} + 20 x^{3} \cos{\left(x \right)} - 60 x^{2} \sin{\left(x \right)} - 120 x \cos{\left(x \right)} + 120 \sin{\left(x \right)}+ \mathrm{constant}


The answer is:

x5cos(x)+5x4sin(x)+20x3cos(x)60x2sin(x)120xcos(x)+120sin(x)+constant- x^{5} \cos{\left(x \right)} + 5 x^{4} \sin{\left(x \right)} + 20 x^{3} \cos{\left(x \right)} - 60 x^{2} \sin{\left(x \right)} - 120 x \cos{\left(x \right)} + 120 \sin{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                                                    
 |                                                                                                     
 |  5                               5                             2             4              3       
 | x *sin(x) dx = C + 120*sin(x) - x *cos(x) - 120*x*cos(x) - 60*x *sin(x) + 5*x *sin(x) + 20*x *cos(x)
 |                                                                                                     
/                                                                                                      
x5sin(x)dx=Cx5cos(x)+5x4sin(x)+20x3cos(x)60x2sin(x)120xcos(x)+120sin(x)\int x^{5} \sin{\left(x \right)}\, dx = C - x^{5} \cos{\left(x \right)} + 5 x^{4} \sin{\left(x \right)} + 20 x^{3} \cos{\left(x \right)} - 60 x^{2} \sin{\left(x \right)} - 120 x \cos{\left(x \right)} + 120 \sin{\left(x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.01.0
The answer [src]
-101*cos(1) + 65*sin(1)
101cos(1)+65sin(1)- 101 \cos{\left(1 \right)} + 65 \sin{\left(1 \right)}
=
=
-101*cos(1) + 65*sin(1)
101cos(1)+65sin(1)- 101 \cos{\left(1 \right)} + 65 \sin{\left(1 \right)}
-101*cos(1) + 65*sin(1)
Numerical answer [src]
0.125081119831161
0.125081119831161

    Use the examples entering the upper and lower limits of integration.