Mister Exam

Other calculators:

Limit of the function (x+y)^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
            2
 lim (x + y) 
x->oo        
$$\lim_{x \to \infty} \left(x + y\right)^{2}$$
Limit((x + y)^2, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty} \left(x + y\right)^{2}$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty} \left(x + y\right)^{2}$$ =
$$\lim_{x \to \infty}\left(\frac{1 + \frac{2 y}{x} + \frac{y^{2}}{x^{2}}}{\frac{1}{x^{2}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1 + \frac{2 y}{x} + \frac{y^{2}}{x^{2}}}{\frac{1}{x^{2}}}\right) = \lim_{u \to 0^+}\left(\frac{u^{2} y^{2} + 2 u y + 1}{u^{2}}\right)$$
=
$$\frac{0^{2} y^{2} + 2 \cdot 0 y + 1}{0} = \infty$$

The final answer:
$$\lim_{x \to \infty} \left(x + y\right)^{2} = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \left(x + y\right)^{2} = \infty$$
$$\lim_{x \to 0^-} \left(x + y\right)^{2} = y^{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(x + y\right)^{2} = y^{2}$$
More at x→0 from the right
$$\lim_{x \to 1^-} \left(x + y\right)^{2} = \left(y + 1\right)^{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(x + y\right)^{2} = \left(y + 1\right)^{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(x + y\right)^{2} = \infty$$
More at x→-oo
Rapid solution [src]
oo
$$\infty$$