Mister Exam

Other calculators:

Limit of the function x+y+z

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (x + y + z)
x->1+           
$$\lim_{x \to 1^+}\left(z + \left(x + y\right)\right)$$
Limit(x + y + z, x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
1 + y + z
$$y + z + 1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(z + \left(x + y\right)\right) = y + z + 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(z + \left(x + y\right)\right) = y + z + 1$$
$$\lim_{x \to \infty}\left(z + \left(x + y\right)\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(z + \left(x + y\right)\right) = y + z$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(z + \left(x + y\right)\right) = y + z$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(z + \left(x + y\right)\right) = -\infty$$
More at x→-oo
One‐sided limits [src]
 lim (x + y + z)
x->1+           
$$\lim_{x \to 1^+}\left(z + \left(x + y\right)\right)$$
1 + y + z
$$y + z + 1$$
 lim (x + y + z)
x->1-           
$$\lim_{x \to 1^-}\left(z + \left(x + y\right)\right)$$
1 + y + z
$$y + z + 1$$
1 + y + z