Mister Exam

Other calculators:


7^(1/(-3+x))

Limit of the function 7^(1/(-3+x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        1   
      ------
      -3 + x
 lim 7      
x->3+       
$$\lim_{x \to 3^+} 7^{\frac{1}{x - 3}}$$
Limit(7^(1/(-3 + x)), x, 3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 3^-} 7^{\frac{1}{x - 3}} = \infty$$
More at x→3 from the left
$$\lim_{x \to 3^+} 7^{\frac{1}{x - 3}} = \infty$$
$$\lim_{x \to \infty} 7^{\frac{1}{x - 3}} = 1$$
More at x→oo
$$\lim_{x \to 0^-} 7^{\frac{1}{x - 3}} = \frac{7^{\frac{2}{3}}}{7}$$
More at x→0 from the left
$$\lim_{x \to 0^+} 7^{\frac{1}{x - 3}} = \frac{7^{\frac{2}{3}}}{7}$$
More at x→0 from the right
$$\lim_{x \to 1^-} 7^{\frac{1}{x - 3}} = \frac{\sqrt{7}}{7}$$
More at x→1 from the left
$$\lim_{x \to 1^+} 7^{\frac{1}{x - 3}} = \frac{\sqrt{7}}{7}$$
More at x→1 from the right
$$\lim_{x \to -\infty} 7^{\frac{1}{x - 3}} = 1$$
More at x→-oo
Rapid solution [src]
oo
$$\infty$$
One‐sided limits [src]
        1   
      ------
      -3 + x
 lim 7      
x->3+       
$$\lim_{x \to 3^+} 7^{\frac{1}{x - 3}}$$
oo
$$\infty$$
= 3.96949676453093e-72
        1   
      ------
      -3 + x
 lim 7      
x->3-       
$$\lim_{x \to 3^-} 7^{\frac{1}{x - 3}}$$
0
$$0$$
= -4.44589751028753e-82
= -4.44589751028753e-82
Numerical answer [src]
3.96949676453093e-72
3.96949676453093e-72
The graph
Limit of the function 7^(1/(-3+x))