Mister Exam

Other calculators:

Limit of the function x+2*y

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (x + 2*y)
x->0+         
$$\lim_{x \to 0^+}\left(x + 2 y\right)$$
Limit(x + 2*y, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
2*y
$$2 y$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x + 2 y\right) = 2 y$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x + 2 y\right) = 2 y$$
$$\lim_{x \to \infty}\left(x + 2 y\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(x + 2 y\right) = 2 y + 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x + 2 y\right) = 2 y + 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x + 2 y\right) = -\infty$$
More at x→-oo
One‐sided limits [src]
 lim (x + 2*y)
x->0+         
$$\lim_{x \to 0^+}\left(x + 2 y\right)$$
2*y
$$2 y$$
 lim (x + 2*y)
x->0-         
$$\lim_{x \to 0^-}\left(x + 2 y\right)$$
2*y
$$2 y$$
2*y