$$\lim_{x \to 0^-}\left(x + 2 y\right) = 2 y$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(x + 2 y\right) = 2 y$$ $$\lim_{x \to \infty}\left(x + 2 y\right) = \infty$$ More at x→oo $$\lim_{x \to 1^-}\left(x + 2 y\right) = 2 y + 1$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(x + 2 y\right) = 2 y + 1$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(x + 2 y\right) = -\infty$$ More at x→-oo