Mister Exam

Other calculators:


(x+1/x)/x

Limit of the function (x+1/x)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /    1\
      |x + -|
      |    x|
 lim  |-----|
x->-oo\  x  /
$$\lim_{x \to -\infty}\left(\frac{x + \frac{1}{x}}{x}\right)$$
Limit((x + 1/x)/x, x, -oo)
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
$$\lim_{x \to -\infty}\left(x^{2} + 1\right) = \infty$$
and limit for the denominator is
$$\lim_{x \to -\infty} x^{2} = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to -\infty}\left(\frac{x + \frac{1}{x}}{x}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to -\infty}\left(\frac{x^{2} + 1}{x^{2}}\right)$$
=
$$\lim_{x \to -\infty}\left(\frac{\frac{d}{d x} \left(x^{2} + 1\right)}{\frac{d}{d x} x^{2}}\right)$$
=
$$\lim_{x \to -\infty} 1$$
=
$$\lim_{x \to -\infty} 1$$
=
$$1$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(\frac{x + \frac{1}{x}}{x}\right) = 1$$
$$\lim_{x \to \infty}\left(\frac{x + \frac{1}{x}}{x}\right) = 1$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x + \frac{1}{x}}{x}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x + \frac{1}{x}}{x}\right) = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x + \frac{1}{x}}{x}\right) = 2$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x + \frac{1}{x}}{x}\right) = 2$$
More at x→1 from the right
Rapid solution [src]
1
$$1$$
The graph
Limit of the function (x+1/x)/x