Mister Exam

Limit of the function x+|x|

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (x + |x|)
x->0+         
$$\lim_{x \to 0^+}\left(x + \left|{x}\right|\right)$$
Limit(x + |x|, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
 lim (x + |x|)
x->0+         
$$\lim_{x \to 0^+}\left(x + \left|{x}\right|\right)$$
0
$$0$$
= 1.71127851547238e-32
 lim (x + |x|)
x->0-         
$$\lim_{x \to 0^-}\left(x + \left|{x}\right|\right)$$
0
$$0$$
= 0.0
= 0.0
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x + \left|{x}\right|\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x + \left|{x}\right|\right) = 0$$
$$\lim_{x \to \infty}\left(x + \left|{x}\right|\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(x + \left|{x}\right|\right) = 2$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x + \left|{x}\right|\right) = 2$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x + \left|{x}\right|\right) = 0$$
More at x→-oo
Numerical answer [src]
1.71127851547238e-32
1.71127851547238e-32
The graph
Limit of the function x+|x|