Mister Exam

Limit of the function x+log(x)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /    log(x)\
 lim |x + ------|
x->oo\      x   /
$$\lim_{x \to \infty}\left(x + \frac{\log{\left(x \right)}}{x}\right)$$
Limit(x + log(x)/x, x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
$$\lim_{x \to \infty}\left(x^{2} + \log{\left(x \right)}\right) = \infty$$
and limit for the denominator is
$$\lim_{x \to \infty} x = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(x + \frac{\log{\left(x \right)}}{x}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to \infty}\left(\frac{x^{2} + \log{\left(x \right)}}{x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \left(x^{2} + \log{\left(x \right)}\right)}{\frac{d}{d x} x}\right)$$
=
$$\lim_{x \to \infty}\left(2 x + \frac{1}{x}\right)$$
=
$$\lim_{x \to \infty}\left(2 x + \frac{1}{x}\right)$$
=
$$\infty$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(x + \frac{\log{\left(x \right)}}{x}\right) = \infty$$
$$\lim_{x \to 0^-}\left(x + \frac{\log{\left(x \right)}}{x}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x + \frac{\log{\left(x \right)}}{x}\right) = -\infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x + \frac{\log{\left(x \right)}}{x}\right) = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x + \frac{\log{\left(x \right)}}{x}\right) = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x + \frac{\log{\left(x \right)}}{x}\right) = -\infty$$
More at x→-oo
Rapid solution [src]
oo
$$\infty$$
The graph
Limit of the function x+log(x)/x