Mister Exam

Other calculators:


x+4/x^2

Limit of the function x+4/x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /    4 \
 lim |x + --|
x->0+|     2|
     \    x /
$$\lim_{x \to 0^+}\left(x + \frac{4}{x^{2}}\right)$$
Limit(x + 4/x^2, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x + \frac{4}{x^{2}}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x + \frac{4}{x^{2}}\right) = \infty$$
$$\lim_{x \to \infty}\left(x + \frac{4}{x^{2}}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(x + \frac{4}{x^{2}}\right) = 5$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x + \frac{4}{x^{2}}\right) = 5$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x + \frac{4}{x^{2}}\right) = -\infty$$
More at x→-oo
Rapid solution [src]
oo
$$\infty$$
One‐sided limits [src]
     /    4 \
 lim |x + --|
x->0+|     2|
     \    x /
$$\lim_{x \to 0^+}\left(x + \frac{4}{x^{2}}\right)$$
oo
$$\infty$$
= 91204.0066225166
     /    4 \
 lim |x + --|
x->0-|     2|
     \    x /
$$\lim_{x \to 0^-}\left(x + \frac{4}{x^{2}}\right)$$
oo
$$\infty$$
= 91203.9933774834
= 91203.9933774834
Numerical answer [src]
91204.0066225166
91204.0066225166
The graph
Limit of the function x+4/x^2