Mister Exam

Other calculators:

Limit of the function x*sqrt(y)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /    ___\
 lim \x*\/ y /
x->oo         
limx(xy)\lim_{x \to \infty}\left(x \sqrt{y}\right)
Limit(x*sqrt(y), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
       /  ___\
oo*sign\\/ y /
sign(y)\infty \operatorname{sign}{\left(\sqrt{y} \right)}
Other limits x→0, -oo, +oo, 1
limx(xy)=sign(y)\lim_{x \to \infty}\left(x \sqrt{y}\right) = \infty \operatorname{sign}{\left(\sqrt{y} \right)}
limx0(xy)=0\lim_{x \to 0^-}\left(x \sqrt{y}\right) = 0
More at x→0 from the left
limx0+(xy)=0\lim_{x \to 0^+}\left(x \sqrt{y}\right) = 0
More at x→0 from the right
limx1(xy)=y\lim_{x \to 1^-}\left(x \sqrt{y}\right) = \sqrt{y}
More at x→1 from the left
limx1+(xy)=y\lim_{x \to 1^+}\left(x \sqrt{y}\right) = \sqrt{y}
More at x→1 from the right
limx(xy)=sign(y)\lim_{x \to -\infty}\left(x \sqrt{y}\right) = - \infty \operatorname{sign}{\left(\sqrt{y} \right)}
More at x→-oo