$$\lim_{x \to \infty}\left(x \sqrt{y}\right) = \infty \operatorname{sign}{\left(\sqrt{y} \right)}$$ $$\lim_{x \to 0^-}\left(x \sqrt{y}\right) = 0$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(x \sqrt{y}\right) = 0$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(x \sqrt{y}\right) = \sqrt{y}$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(x \sqrt{y}\right) = \sqrt{y}$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(x \sqrt{y}\right) = - \infty \operatorname{sign}{\left(\sqrt{y} \right)}$$ More at x→-oo