Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (6^(2*x)-7^(-2*x))/(-2*x+sin(3*x))
Limit of e^(3-x)*(-2+x)
Limit of -35-14*x-6*x^2
Limit of ((4+x^2+5*x)/(7+x^2-3*x))^x
x*sqrt(y)
The double integral of
:
x*sqrt(y)
Identical expressions
x*sqrt(y)
x multiply by square root of (y)
x*√(y)
xsqrt(y)
xsqrty
Limit of the function
/
x*sqrt(y)
Limit of the function x*sqrt(y)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ ___\ lim \x*\/ y / x->oo
lim
x
→
∞
(
x
y
)
\lim_{x \to \infty}\left(x \sqrt{y}\right)
x
→
∞
lim
(
x
y
)
Limit(x*sqrt(y), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution
[src]
/ ___\ oo*sign\\/ y /
∞
sign
(
y
)
\infty \operatorname{sign}{\left(\sqrt{y} \right)}
∞
sign
(
y
)
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
x
y
)
=
∞
sign
(
y
)
\lim_{x \to \infty}\left(x \sqrt{y}\right) = \infty \operatorname{sign}{\left(\sqrt{y} \right)}
x
→
∞
lim
(
x
y
)
=
∞
sign
(
y
)
lim
x
→
0
−
(
x
y
)
=
0
\lim_{x \to 0^-}\left(x \sqrt{y}\right) = 0
x
→
0
−
lim
(
x
y
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
x
y
)
=
0
\lim_{x \to 0^+}\left(x \sqrt{y}\right) = 0
x
→
0
+
lim
(
x
y
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
x
y
)
=
y
\lim_{x \to 1^-}\left(x \sqrt{y}\right) = \sqrt{y}
x
→
1
−
lim
(
x
y
)
=
y
More at x→1 from the left
lim
x
→
1
+
(
x
y
)
=
y
\lim_{x \to 1^+}\left(x \sqrt{y}\right) = \sqrt{y}
x
→
1
+
lim
(
x
y
)
=
y
More at x→1 from the right
lim
x
→
−
∞
(
x
y
)
=
−
∞
sign
(
y
)
\lim_{x \to -\infty}\left(x \sqrt{y}\right) = - \infty \operatorname{sign}{\left(\sqrt{y} \right)}
x
→
−
∞
lim
(
x
y
)
=
−
∞
sign
(
y
)
More at x→-oo