Mister Exam

Other calculators:


x*sin(4*x)

Limit of the function x*sin(4*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (x*sin(4*x))
x->1+            
$$\lim_{x \to 1^+}\left(x \sin{\left(4 x \right)}\right)$$
Limit(x*sin(4*x), x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(x \sin{\left(4 x \right)}\right) = \sin{\left(4 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x \sin{\left(4 x \right)}\right) = \sin{\left(4 \right)}$$
$$\lim_{x \to \infty}\left(x \sin{\left(4 x \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→oo
$$\lim_{x \to 0^-}\left(x \sin{\left(4 x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x \sin{\left(4 x \right)}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(x \sin{\left(4 x \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo
One‐sided limits [src]
 lim (x*sin(4*x))
x->1+            
$$\lim_{x \to 1^+}\left(x \sin{\left(4 x \right)}\right)$$
sin(4)
$$\sin{\left(4 \right)}$$
= -0.756802495307928
 lim (x*sin(4*x))
x->1-            
$$\lim_{x \to 1^-}\left(x \sin{\left(4 x \right)}\right)$$
sin(4)
$$\sin{\left(4 \right)}$$
= -0.756802495307928
= -0.756802495307928
Rapid solution [src]
sin(4)
$$\sin{\left(4 \right)}$$
Numerical answer [src]
-0.756802495307928
-0.756802495307928
The graph
Limit of the function x*sin(4*x)