$$\lim_{x \to 0^-}\left(x \left(- \operatorname{atan}{\left(1 \cdot \frac{1}{x} \right)} + \frac{\pi}{2}\right)\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(x \left(- \operatorname{atan}{\left(1 \cdot \frac{1}{x} \right)} + \frac{\pi}{2}\right)\right) = 0$$
$$\lim_{x \to \infty}\left(x \left(- \operatorname{atan}{\left(1 \cdot \frac{1}{x} \right)} + \frac{\pi}{2}\right)\right) = \infty$$
More at x→oo$$\lim_{x \to 1^-}\left(x \left(- \operatorname{atan}{\left(1 \cdot \frac{1}{x} \right)} + \frac{\pi}{2}\right)\right) = \frac{\pi}{4}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(x \left(- \operatorname{atan}{\left(1 \cdot \frac{1}{x} \right)} + \frac{\pi}{2}\right)\right) = \frac{\pi}{4}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(x \left(- \operatorname{atan}{\left(1 \cdot \frac{1}{x} \right)} + \frac{\pi}{2}\right)\right) = -\infty$$
More at x→-oo