Mister Exam

Other calculators:


x*(1+x)^x

Limit of the function x*(1+x)^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /         x\
 lim \x*(1 + x) /
x->0+            
$$\lim_{x \to 0^+}\left(x \left(x + 1\right)^{x}\right)$$
Limit(x*(1 + x)^x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
     /         x\
 lim \x*(1 + x) /
x->0+            
$$\lim_{x \to 0^+}\left(x \left(x + 1\right)^{x}\right)$$
0
$$0$$
= 6.11760671093707e-29
     /         x\
 lim \x*(1 + x) /
x->0-            
$$\lim_{x \to 0^-}\left(x \left(x + 1\right)^{x}\right)$$
0
$$0$$
= -1.44616789078331e-30
= -1.44616789078331e-30
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x \left(x + 1\right)^{x}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x \left(x + 1\right)^{x}\right) = 0$$
$$\lim_{x \to \infty}\left(x \left(x + 1\right)^{x}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(x \left(x + 1\right)^{x}\right) = 2$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x \left(x + 1\right)^{x}\right) = 2$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x \left(x + 1\right)^{x}\right) = -\infty$$
More at x→-oo
Numerical answer [src]
6.11760671093707e-29
6.11760671093707e-29
The graph
Limit of the function x*(1+x)^x