$$\lim_{x \to 0^-}\left(x \left(x + 1\right)^{x}\right) = 0$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(x \left(x + 1\right)^{x}\right) = 0$$ $$\lim_{x \to \infty}\left(x \left(x + 1\right)^{x}\right) = \infty$$ More at x→oo $$\lim_{x \to 1^-}\left(x \left(x + 1\right)^{x}\right) = 2$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(x \left(x + 1\right)^{x}\right) = 2$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(x \left(x + 1\right)^{x}\right) = -\infty$$ More at x→-oo