Mister Exam

Other calculators:


(-1+cos(x))*cot(x)

Limit of the function (-1+cos(x))*cot(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim ((-1 + cos(x))*cot(x))
x->0+                      
$$\lim_{x \to 0^+}\left(\left(\cos{\left(x \right)} - 1\right) \cot{\left(x \right)}\right)$$
Limit((-1 + cos(x))*cot(x), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+}\left(\cos{\left(x \right)} - 1\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \frac{1}{\cot{\left(x \right)}} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\left(\cos{\left(x \right)} - 1\right) \cot{\left(x \right)}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(\cos{\left(x \right)} - 1\right)}{\frac{d}{d x} \frac{1}{\cot{\left(x \right)}}}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{\sin{\left(x \right)} \cot^{2}{\left(x \right)}}{\cot^{2}{\left(x \right)} + 1}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \frac{1}{\cot^{2}{\left(x \right)} + 1}}{\frac{d}{d x} \left(- \frac{1}{\sin{\left(x \right)} \cot^{2}{\left(x \right)}}\right)}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{\left(- 2 \cot^{2}{\left(x \right)} - 2\right) \cot{\left(x \right)}}{\left(- \frac{2 \cot^{2}{\left(x \right)} + 2}{\sin{\left(x \right)} \cot^{3}{\left(x \right)}} + \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)} \cot^{2}{\left(x \right)}}\right) \left(\cot^{2}{\left(x \right)} + 1\right)^{2}}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{\left(- 2 \cot^{2}{\left(x \right)} - 2\right) \cot{\left(x \right)}}{\left(- \frac{2 \cot^{2}{\left(x \right)} + 2}{\sin{\left(x \right)} \cot^{3}{\left(x \right)}} + \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)} \cot^{2}{\left(x \right)}}\right) \left(\cot^{2}{\left(x \right)} + 1\right)^{2}}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 2 time(s)
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
 lim ((-1 + cos(x))*cot(x))
x->0+                      
$$\lim_{x \to 0^+}\left(\left(\cos{\left(x \right)} - 1\right) \cot{\left(x \right)}\right)$$
0
$$0$$
= 9.41021530176551e-32
 lim ((-1 + cos(x))*cot(x))
x->0-                      
$$\lim_{x \to 0^-}\left(\left(\cos{\left(x \right)} - 1\right) \cot{\left(x \right)}\right)$$
0
$$0$$
= -9.41021530176551e-32
= -9.41021530176551e-32
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\left(\cos{\left(x \right)} - 1\right) \cot{\left(x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\left(\cos{\left(x \right)} - 1\right) \cot{\left(x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(\left(\cos{\left(x \right)} - 1\right) \cot{\left(x \right)}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(\left(\cos{\left(x \right)} - 1\right) \cot{\left(x \right)}\right) = \frac{-1 + \cos{\left(1 \right)}}{\tan{\left(1 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\left(\cos{\left(x \right)} - 1\right) \cot{\left(x \right)}\right) = \frac{-1 + \cos{\left(1 \right)}}{\tan{\left(1 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\left(\cos{\left(x \right)} - 1\right) \cot{\left(x \right)}\right)$$
More at x→-oo
Numerical answer [src]
9.41021530176551e-32
9.41021530176551e-32
The graph
Limit of the function (-1+cos(x))*cot(x)