Mister Exam

Limit of the function x*|x|

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (x*|x|)
x->0+       
limx0+(xx)\lim_{x \to 0^+}\left(x \left|{x}\right|\right)
Limit(x*|x|, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-200200
One‐sided limits [src]
 lim (x*|x|)
x->0+       
limx0+(xx)\lim_{x \to 0^+}\left(x \left|{x}\right|\right)
0
00
= -9.68305799950874e-32
 lim (x*|x|)
x->0-       
limx0(xx)\lim_{x \to 0^-}\left(x \left|{x}\right|\right)
0
00
= 9.68305799950874e-32
= 9.68305799950874e-32
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx0(xx)=0\lim_{x \to 0^-}\left(x \left|{x}\right|\right) = 0
More at x→0 from the left
limx0+(xx)=0\lim_{x \to 0^+}\left(x \left|{x}\right|\right) = 0
limx(xx)=\lim_{x \to \infty}\left(x \left|{x}\right|\right) = \infty
More at x→oo
limx1(xx)=1\lim_{x \to 1^-}\left(x \left|{x}\right|\right) = 1
More at x→1 from the left
limx1+(xx)=1\lim_{x \to 1^+}\left(x \left|{x}\right|\right) = 1
More at x→1 from the right
limx(xx)=\lim_{x \to -\infty}\left(x \left|{x}\right|\right) = -\infty
More at x→-oo
Numerical answer [src]
-9.68305799950874e-32
-9.68305799950874e-32
The graph
Limit of the function x*|x|