Mister Exam

Other calculators:


x*log(x)^2

Limit of the function x*log(x)^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     2   \
 lim \x*log (x)/
x->0+           
limx0+(xlog(x)2)\lim_{x \to 0^+}\left(x \log{\left(x \right)}^{2}\right)
Limit(x*log(x)^2, x, 0)
The graph
02468-8-6-4-2-10100100
Rapid solution [src]
0
00
One‐sided limits [src]
     /     2   \
 lim \x*log (x)/
x->0+           
limx0+(xlog(x)2)\lim_{x \to 0^+}\left(x \log{\left(x \right)}^{2}\right)
0
00
= 0.0145268477491906
     /     2   \
 lim \x*log (x)/
x->0-           
limx0(xlog(x)2)\lim_{x \to 0^-}\left(x \log{\left(x \right)}^{2}\right)
0
00
= (-0.0126046545241533 + 0.0122434670558655j)
= (-0.0126046545241533 + 0.0122434670558655j)
Other limits x→0, -oo, +oo, 1
limx0(xlog(x)2)=0\lim_{x \to 0^-}\left(x \log{\left(x \right)}^{2}\right) = 0
More at x→0 from the left
limx0+(xlog(x)2)=0\lim_{x \to 0^+}\left(x \log{\left(x \right)}^{2}\right) = 0
limx(xlog(x)2)=\lim_{x \to \infty}\left(x \log{\left(x \right)}^{2}\right) = \infty
More at x→oo
limx1(xlog(x)2)=0\lim_{x \to 1^-}\left(x \log{\left(x \right)}^{2}\right) = 0
More at x→1 from the left
limx1+(xlog(x)2)=0\lim_{x \to 1^+}\left(x \log{\left(x \right)}^{2}\right) = 0
More at x→1 from the right
limx(xlog(x)2)=\lim_{x \to -\infty}\left(x \log{\left(x \right)}^{2}\right) = -\infty
More at x→-oo
Numerical answer [src]
0.0145268477491906
0.0145268477491906
The graph
Limit of the function x*log(x)^2