Mister Exam

Other calculators:


x*log(x)

Limit of the function x*log(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (x*log(x))
x->0+          
$$\lim_{x \to 0^+}\left(x \log{\left(x \right)}\right)$$
Limit(x*log(x), x, 0)
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
 lim (x*log(x))
x->0+          
$$\lim_{x \to 0^+}\left(x \log{\left(x \right)}\right)$$
0
$$0$$
= -0.0332270187868538
 lim (x*log(x))
x->0-          
$$\lim_{x \to 0^-}\left(x \log{\left(x \right)}\right)$$
0
$$0$$
= (0.00188965700203347 - 0.000780728554793218j)
= (0.00188965700203347 - 0.000780728554793218j)
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x \log{\left(x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x \log{\left(x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(x \log{\left(x \right)}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(x \log{\left(x \right)}\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x \log{\left(x \right)}\right) = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x \log{\left(x \right)}\right) = -\infty$$
More at x→-oo
Numerical answer [src]
-0.0332270187868538
-0.0332270187868538
The graph
Limit of the function x*log(x)