$$\lim_{x \to \infty}\left(x \sinh{\left(x \right)}\right) = \infty$$ $$\lim_{x \to 0^-}\left(x \sinh{\left(x \right)}\right) = 0$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(x \sinh{\left(x \right)}\right) = 0$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(x \sinh{\left(x \right)}\right) = \frac{-1 + e^{2}}{2 e}$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(x \sinh{\left(x \right)}\right) = \frac{-1 + e^{2}}{2 e}$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(x \sinh{\left(x \right)}\right) = \infty$$ More at x→-oo