We have indeterminateness of type
oo/oo,
i.e. limit for the numerator is
$$\lim_{x \to \infty} x = \infty$$
and limit for the denominator is
$$\lim_{x \to \infty} e^{\frac{x^{2}}{2}} = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(x e^{\frac{\left(-1\right) x^{2}}{2}}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to \infty}\left(x e^{- \frac{x^{2}}{2}}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} x}{\frac{d}{d x} e^{\frac{x^{2}}{2}}}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{e^{- \frac{x^{2}}{2}}}{x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{e^{- \frac{x^{2}}{2}}}{x}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)