Mister Exam

Other calculators:


x*e^(2*x)

Limit of the function x*e^(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   2*x\
 lim \x*E   /
x->oo        
$$\lim_{x \to \infty}\left(e^{2 x} x\right)$$
Limit(x*E^(2*x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(e^{2 x} x\right) = \infty$$
$$\lim_{x \to 0^-}\left(e^{2 x} x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(e^{2 x} x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(e^{2 x} x\right) = e^{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(e^{2 x} x\right) = e^{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(e^{2 x} x\right) = 0$$
More at x→-oo
The graph
Limit of the function x*e^(2*x)