Mister Exam

Other calculators:


x*e^(4*x)

Limit of the function x*e^(4*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /   4*x\
 lim  \x*E   /
x->-oo        
limx(e4xx)\lim_{x \to -\infty}\left(e^{4 x} x\right)
Limit(x*E^(4*x), x, -oo)
Lopital's rule
We have indeterminateness of type
-oo/oo,

i.e. limit for the numerator is
limxx=\lim_{x \to -\infty} x = -\infty
and limit for the denominator is
limxe4x=\lim_{x \to -\infty} e^{- 4 x} = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx(e4xx)\lim_{x \to -\infty}\left(e^{4 x} x\right)
=
Let's transform the function under the limit a few
limx(xe4x)\lim_{x \to -\infty}\left(x e^{4 x}\right)
=
limx(ddxxddxe4x)\lim_{x \to -\infty}\left(\frac{\frac{d}{d x} x}{\frac{d}{d x} e^{- 4 x}}\right)
=
limx(e4x4)\lim_{x \to -\infty}\left(- \frac{e^{4 x}}{4}\right)
=
limx(e4x4)\lim_{x \to -\infty}\left(- \frac{e^{4 x}}{4}\right)
=
00
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-25000000000000000002500000000000000000
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx(e4xx)=0\lim_{x \to -\infty}\left(e^{4 x} x\right) = 0
limx(e4xx)=\lim_{x \to \infty}\left(e^{4 x} x\right) = \infty
More at x→oo
limx0(e4xx)=0\lim_{x \to 0^-}\left(e^{4 x} x\right) = 0
More at x→0 from the left
limx0+(e4xx)=0\lim_{x \to 0^+}\left(e^{4 x} x\right) = 0
More at x→0 from the right
limx1(e4xx)=e4\lim_{x \to 1^-}\left(e^{4 x} x\right) = e^{4}
More at x→1 from the left
limx1+(e4xx)=e4\lim_{x \to 1^+}\left(e^{4 x} x\right) = e^{4}
More at x→1 from the right
The graph
Limit of the function x*e^(4*x)