Mister Exam

Other calculators

Derivative of x*e^(4*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   4*x
x*E   
e4xxe^{4 x} x
x*E^(4*x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    g(x)=e4xg{\left(x \right)} = e^{4 x}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=4xu = 4 x.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 44

      The result of the chain rule is:

      4e4x4 e^{4 x}

    The result is: 4xe4x+e4x4 x e^{4 x} + e^{4 x}

  2. Now simplify:

    (4x+1)e4x\left(4 x + 1\right) e^{4 x}


The answer is:

(4x+1)e4x\left(4 x + 1\right) e^{4 x}

The graph
02468-8-6-4-2-1010-1000000000000000000010000000000000000000
The first derivative [src]
 4*x        4*x
E    + 4*x*e   
4xe4x+e4x4 x e^{4 x} + e^{4 x}
The second derivative [src]
             4*x
8*(1 + 2*x)*e   
8(2x+1)e4x8 \left(2 x + 1\right) e^{4 x}
The third derivative [src]
              4*x
16*(3 + 4*x)*e   
16(4x+3)e4x16 \left(4 x + 3\right) e^{4 x}